Microresonator-referenced soliton microcombs with zeptosecond-level timing noise (2025)

  • Hecht, J. et al. The bandwidth bottleneck. Nature 536, 139–142 (2016).

    Article ADS Google Scholar

  • Betz, J. W. Engineering Satellite-based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers (John Wiley & Sons, 2015).

  • Kodheli, O. et al. Satellite communications in the new space era: a survey and future challenges. IEEE Commun. Surv. Tutor. 23, 70–109 (2020).

    Article Google Scholar

  • Schlüter, W. & Behrend, D. The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J. Geod. 81, 379–387 (2007).

    Article ADS Google Scholar

  • Doviak, R. J. et al. Doppler Radar and Weather Observations (Courier Corporation, 2006).

  • Huang, W., Liu, X. & Gill, E. W. Ocean wind and wave measurements using X-band marine radar: a comprehensive review. Remote Sens. 9, 1261 (2017).

    Article ADS Google Scholar

  • Ayhan, S. et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy. IEEE Trans. Microw. Theory Tech. 64, 3290–3301 (2016).

    Article ADS Google Scholar

  • Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    Article ADS Google Scholar

  • Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26, 12257–12265 (2018).

    Article ADS Google Scholar

  • Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Article ADS Google Scholar

  • Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    Article ADS Google Scholar

  • Kittlaus, E. A. et al. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 12, 4397 (2021).

    Article ADS Google Scholar

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article Google Scholar

  • Yao, Y., Jiang, Y. & Ma, L. Optical frequency division. Natl Sci. Rev. 7, 1801–1802 (2020).

    Article Google Scholar

  • Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article ADS Google Scholar

  • Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article ADS Google Scholar

  • Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article ADS Google Scholar

  • Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 1018 instability. Science 368, 889–892 (2020).

    Article ADS Google Scholar

  • Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).

    Article ADS Google Scholar

  • Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article ADS Google Scholar

  • Diddams, S. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).

    Article ADS Google Scholar

  • Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon. 6, 687–692 (2012).

    Article ADS Google Scholar

  • Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

    Article ADS Google Scholar

  • Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature 627, 540–545 (2024).

    Article ADS Google Scholar

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article Google Scholar

  • Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).

    Article ADS MathSciNet Google Scholar

  • Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011).

    Article ADS Google Scholar

  • Liu, K. et al. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).

    Article ADS Google Scholar

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Article ADS Google Scholar

  • Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article ADS Google Scholar

  • Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

    Article ADS Google Scholar

  • Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article ADS Google Scholar

  • Yao, L. et al. Soliton microwave oscillators using over-sized billion Q optical microresonators. Optica 9, 561–564 (2022).

    Article ADS Google Scholar

  • Puckett, M. W. et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12, 934 (2021).

    Article ADS Google Scholar

  • Qu, Z. et al. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation. Opt. Express 31, 3005–3016 (2023).

    Article ADS Google Scholar

  • Ye, Z. et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photon. Res. 11, 558–568 (2023).

    Article Google Scholar

  • Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).

    Article ADS Google Scholar

  • Jeong, D. et al. Ultralow jitter silica microcomb. Optica 7, 1108–1111 (2020).

    Article ADS Google Scholar

  • Lao, C. et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun. 14, 1802 (2023).

    Article Google Scholar

  • Carr, J. J. in The Technician’s EMI Handbook 163–195 (Newnes, 2000).

  • Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).

    Article ADS Google Scholar

  • Helgason, O’. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).

  • Yang, Q.-F., Hu, Y., Torres-Company, V. & Vahala, K. Efficient microresonator frequency combs. eLight 4, 18 (2024).

    Article Google Scholar

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article ADS Google Scholar

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article ADS Google Scholar

  • Shao, L. et al. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Opt. Express 28, 23728–23738 (2020).

    Article ADS Google Scholar

  • Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article ADS Google Scholar

  • Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article Google Scholar

  • Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article ADS Google Scholar

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article ADS Google Scholar

  • Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article ADS Google Scholar

  • Liu, Y. et al. A photonic integrated circuit-based erbiumdoped amplifier. Science 376, 1309–1313 (2022).

    Article ADS Google Scholar

  • Liu, G. et al. Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators. Optica 5, 219–226 (2018).

    Article ADS Google Scholar

  • Anderson, M. et al. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Opt. Lett. 43, 2106–2109 (2018).

    Article ADS Google Scholar

  • Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).

    Article ADS Google Scholar

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article ADS Google Scholar

  • Zhao, Y. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024).

    Article ADS Google Scholar

  • Kondratiev, N. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

    Article ADS Google Scholar

  • Gordon, J. P. & Haus, H. A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).

    Article ADS Google Scholar

  • Sun, S. et al. Microcavity Kerr optical frequency division with integrated silicon nitride photonics. Nat. Photon. https://doi.org/10.1038/s41566-025-01668-3 (2025).

  • Ji, Q.-X. et al. Dispersive-wave-agile optical frequency division. Nat. Photon. https://doi.org/10.1038/s41566-025-01667-4 (2025).

  • Microresonator-referenced soliton microcombs with zeptosecond-level timing noise (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Rueben Jacobs

    Last Updated:

    Views: 5887

    Rating: 4.7 / 5 (57 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Rueben Jacobs

    Birthday: 1999-03-14

    Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

    Phone: +6881806848632

    Job: Internal Education Planner

    Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

    Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.